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A Legendre Amroxirnation Method for thle
circular Microstrip Disk Problem
SHIMON COEN, STUDENT M[EMBER, IEEE, AND GRAHAM M. L. GLADWELL

Abstract—The quasi-static solution for the (circular micro:strip disk is

studied using a GaIerkin solution to the Fredholm integral equation of

the first kind derived hy using the Green’s function approaclh. The basis
functions are modified Legerrdre polynomials combined with a reciprocal

square root to provide the correct singularity in charge density at the
edge of the disk. The integrals involving the singular part of the Green’s
function are evaluated exactly, the remainder by using Gaussian quadra-
ture. The method is compared in computational efficiency with recent

methods based either on a Galerkin approach in the spectral domain, or

the use of dual integral equations. Numerical rmdts are given for charge

distribution and capacitance; they are compru’ed to exact results and

those obtained by others, and the limitations of those methods are dis-

cussed. Closed form expressions are given for the capacitance of a disk

based on two simple charge distributions.

L INTRODUCTION

R

ECENTLY, three methods have been proposed for

the determination of the capacitance of the circular

microstrip disk for applications in microwave integrated

circuits. Itoh and Mittra [1] propose a Galerkin technique

in the spectral domain. They present a general tlheory but

give numerical results only with first-order approximation

in their technique. The coefficients of the Galerkin matrix

in [1] involve infinite integrals of Bessel functions, and

these require considerable computer time. To avoid this

deficiency, they present numerical results only for two

very simple one-term approximations to the charge density,

but have not shown what the contribution is of additional

basis functions to capacitance results. We ‘suggest that

although working in the spectral domain makes the for-

mulation of electrostatic problems easy, it has no advantage

over the space formulation, used here in the numerical

solution. The more accurate calculations of the present

analysis confirm, however, that the one-term results for

capacitance given in [1] are sometimes remarkably accurate.

In addition, it is shown in the Appendix that the capacitances

corresponding to these one-term approximations may be

expressed in closed forms which exhibit the limiting prop-

erties observed numerically in [1] and take considerably

less computation time.

Borkar and Yang [2] “present a method basecl on dual

integral equations. Although they claim that their numerical

results are “slightly lower” than those of [1], the disparity
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Fig. 1. The geometry of the circular microstrip disk,

is more than 10 percent in some cases. Numerically, their

method is less efficient than that of [1] since it involves

the calculation of numerous infinite integrals of products of

Bessel functions. Their claim that the solution is obtained

from a “quickly convergent series” is not substantiated;

on the basis of our experience with series of the kind they

use in other, but similar ‘applications, we doubt the validity

of this claim.

Although the nature of the charge distribution is in:

corporate in [1] or [2], the calculation of charge dis-

tribution would require a number of basis functions,

much computational effort, and time. From a practical

point of view, this is not a deficiency since in practice the

exact charge distribution is rarely required but solutions

to electrostatic problems are incomplete without it.

The capacitance of the circular microstrip disk in twct.m

for large a/h may be obtained approximately by a formula

due to Kirchhoff [12]. Wolff and Knoppik [13] assume

that for large a/h the edge field of the circular microstrip

disk is similar to that of the rectangular microstrip disk.

They use Kirchhoff’s [12] formulas, and further assume

that the edge effect may be computed from the quasi-TEM

solution of a microstrip line of width w = 2a. In this way

they obtain a first-order modification of ICirchhoff’s

formula valid for a certain range of a/h.

In this paper the electrostatics of the circular microstrip

disk is formulated as a Fredholm integral equation of the

first kind with a singular kernel. The charge density is

expanded in terms of modified Legendre polynomials,

together with a reciprocal square root to provide the correct

singularity at the edge of the disk. The integrals arising

from the singular part of the kernel are evaluated exactly,

the remainder by using Gaussian quadrature. The total

charge and capacitance are obtained with no extra numerical
integrations.

II. FORMULATION OF THE BASIC INTEGRAL EQUATION

The axially symmetric electrostatic potential (/ due to a

charged circular disk shown in Fig. 1 satisfies Laplace’s

equation and certain boundary conditions. The Green’sof Waterloo, Waterloo, Ont., Canada.
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function solution for ~(r) in terms of charge distribution

a(s) is most easily obtained by transforming to the spectral

domain. The Hankel transform of the potential ~(<) may

be expressed in terms of the transform 6(<) in the form

given by Itoh and Mitt.ra [1], namely,

i(<) = 9(<)~(t) (1)

where, in the particular problem shown in Fig. 1,

9(0 = (1 – e- 2<9/[%(1 – Fe- 2<h)l (2)

u = 8.(1 + c,) and ~ = (1 – e,)/(1 + e,). Now write

J

a
8({) = S6(S)JO(S<) ds (3)

o

and apply the inverse Hankel transform to both sides of

(1); the result is the following Fredholm equation of the

first kind:

J

a

caj(r) = sG(r,s)cr(s) ds, r<a. (4)
o

Here ~(r) is the potential on the disk, o(s) is the unknown

charge distribution, and G(r,s) is the axisymmetric Green’s

function linking the potential at radius r to an annual

distribution a(s) at radius ,s. G(r,s) maybe written

G(r,s) = ko(r,.s) + kl(r,s) (5)

where ko(r,s) is the axisymmetric free-space Green’s

function

ko(r,s) =
J

m Jo(r<)Jo(s~) d<
o

(

= (2/ns)K(r/s), r<s

(2/nr)K (s/r), r>s (6)

result is

where Jn = [(r + S)2 + (2nh)2] ‘/2. The elliptic integrals

are computed using the Chebyshev expansion given by

Luke [4], and the infinite series is summed by applying

the nonlinear transformations developed by Levin [5].

These were found to be fast and accurate.

III. APPROXIMATION SOLUTION OF THE INTEGRAL

EQUATION USING PROPERTIES OF

LEGENDRE POLYNOMIALS

Introduce dimensionless variables and functions by taking

r=ax s=ay a(s) = Voca - ‘q(y)

~(r) = Vog(x) ko(r,s) = U- lkO*(x,y)

kl(r,s) = a-lkl*(x,y) (11)

where V. is some standard potential. Then (4) and (5) give

J

g(x) = ‘ [ko*(X,y) + I%,*(x, y)] yif(y) dy, O<x <l.
o

(12)

Now assume that q(y) may be approximated by

q(y) = (1 – y2)-1/2 ~ anP~*(y) (13)
n=o

where P.*(y) - P2H(~ 1 – y2), and Pzn( o) is the Legendre

polynomial of degree 2n, and a. are coefficients to be

determined. Substitute (13) into (12): the equation becomes

J

e–2~h g(x) = “$0an ~’ [ko”(x,y)
kl(r,s) = –(1 – ~) m Jo(rc)Jo(sc) dt (7) o

0 1 _ pe-%h

in which K(”) is the complete elliptic integral of the first

kind. If tj(r) = 1 for r < a, then the capacitance ‘is the

total charge given by

J

a

c=2rc ra(r) dr. (8)
o

The equation governing the charge distribution on the

disk in any other axisymmetrical configuration, e.g., when

there is a cover over the disk, will have the same form (4)
where ko(r,s) will be the same but the multiplier of Jo(r<) .

Jo(s&) in the integral for kl(r,s) will be changed. The

analysis given as follows may be modified to apply to such

problems.

The term (1 – fle - ‘th)- 1 in (7) may be expanded into

a uniformly convergent series, and then (7) may be ex-

pressed as

kl(r,s) = -(1 -~) ~ /1”-’ JQ e-’’nlo(r~)~lo(s<)<) d< (9)
~=1 o

which in turn may be written in terms of elementary

functions using the result given by Watson [3]; the final

+ kl”(x, y)] Ypn”( Y)(1 – yz)- 1/2 dy. (14)

The first integral, involving the singular part of the kernel,

may be evaluated in closed form by using the result due

to Popov [6], namely,

J

‘(1 - y’)- 1/2yko*(x, y)Pm*(y) dy = A.p””(x) (15)
o

where

an = (7c/2)[(2rz) !/{2’”(rz !)’}]’. (16)

The second integral in (14) may be transformed by the

substitution t = d 1 – yz into

J

‘ kl*(x, y) ypn*(y)(l – Y2)- 1/2 dy
o

.
J

1 k2(x,t)P2.(t) dt = ~.(x) (17)
o

where kz(x,t) = kl *(x, y). This integral may be approx-

imated using ordinary Gaussian quadrature of suitable

order 2M > 2N. If wj,tj are the weights and positive
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abscissa of this quadrature given, for example, in Abram-

owitz and Stegun [7], then

b.(x) = f Wjkz(x,tj)pz.(tj). (18)
j=~

Now (15) and (17) reduce (14) to a set of linear equations

g(x) = ~ a.&P.*(x) + ~ a.b.(x), O<xsl.
~=o ~=o

(19)

These equations may be solved by multiplying throughout

by x(1 – X2)- ‘12P~*(x) and using the orthogonality

conditions

J

1
X(l – x2)– l/2 P~*(x)Pw*(x) dx

o

and another Gaussian quadrature

[1~(1 - x2)-1’’Pm*(x)bn(x)~~ =

J

1

. P2.(u)P2M(u) du
o

= (4nz + l)-” %m,n

(20)

Jo Jo

where d.(u) - b.(~ 1 – ZZ2)and

c“m = ,:, w,P2m(t,)dn(t,).

Thus (19) yields

(4m + 1)- ‘J~a~ + f c“~a. = ti~,o,
n=l’

(21)

(22)

m = 0,1, ””.,N.

(23)

The right-hand side corresponds to a dimensionless

potential g(x) = 1. If the same order ,of Gaussian quad-

rature is used in (18) and (22), then cm~will be symmetric.

Equation (23) provides N + 1 equations for the deter-

mination of the N + 1 unknown a.. The capacitance is

given by

C = 27tactao. (24)

Note that no extra numerical integration is required to

compute this quantity.

IV. VARIATIONAL PROPERTIES OF THE CAPACITANCE

In this section it will be shown that the capacitance given

by (24), where a. is obtained from the solution of (23), is

stationary for arbitrary variations in q(y) as given by (13),

that is, in a..

First in (12) put g(x) = 1, 0< x < 1, and multiply

both sides of this equation by ~~ XV(X) dx; this gives

\

J

1 11

XV(X) dx =
JJ

K *(x, Y)rl(x)rl(Y)Yx d.~ dx (25)
o 00

where K* = /co* + kl *. Here the potential on the disk
is 1 and the total charge Q is from @) and (11) given by

J
Q = 2mta ‘ ~~(~j dy. (26)

o

3

If we write Q = C, then (25) shows that

2mxa J: j: K *(x, YMXMY)XY dy d~c—=
c Lf: ‘V(x) dx]’ ““

(27)

Since K*(x,y) is symmetric, then the right-hand side of

(27) is always positive. To make the left-hand side of (27)

stationary with respect to arbitrary variations in the

functional form of q, substitute the expansion (13) for q

and set dC/da” + O; the result is

2naa
— aod”,o = (4n + 1)- 12”an + ~ Cj,,Uj,

c
j=o

n = 0,1,2,. . o,N (28)

where use was made of(15) and (21). But, in view of (24),

the capacitance is given by

C = 2mzaao (29)

from which the left-hand side of (28) becomes d.,o. Now

comparing (28) and (23), we see that they arc identical.

So the capacitance as given by (24) is stationary with

respect to arbitrary variations in the functional form of q,

i.e., dcldan = O for n = 0,1,2,. . . ,N.

Further, since the right-hand side of (27) is always

positive and the left-hand side is stationary, then the exact

solution for capacitance, say Cm, will be alw~ys greater

than or equal to C~; that is, Cm > C~ and thus the ap-

proximate capacitance from the present analysis CN,

where N denotes the number of terms in the expansion (13),

is a lower bound.

V. FORMULAS FOR CAPACITANCE

For the circular microstrip disk problem, Itoh and

Mittra [1] obtained results with first-order approximation

in their technique, based on two very simple one-term

approximations to the charge distribution. In the Appendix,

these are expressed in closed form. The result, for the

capacitance associated with the Maxwell function approx-

imation to the charge density, is from (A7) given by

/[
CM = 2nac4 7c/2 – (1 – /3) ~ ~-ll.

1

(30)
n=l

where

[
1. = \ n – 2tan-’ (ny) + nyln

(%7)1

and y = h/a. The corresponding result for the gate function

approximation to the charge density is from (Al 1) given by

c~ = ~: /(4/3n - (1 - p) ~ /Y-’J’n) (31)
~=1

where

J“ = [4/(3 nk3)]{(2k2 – l)E(k) + (1 – k2)K(k)} – ny

kz = 1/(1 + n2y2).

The computation of capacitance via the formulas (30)

and (31) takes considerably less computation time than the

infinite integrals in [1]; a comparison of the results for
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TABLE I
NORMALIZED CAPACITANCE FOR THE CIRCLJLAR MICROSTRIP

in Vacuo

h/a N=O N=l

0.2 1.5290 1.5800

0.5 2.3094 2.31L33

1.0 3.5336 3.5345

2.50 7.2684 7.2664

5.00 13.5920 13.5920

10.00 26.3006 26.3006

N=2

1.5800

2.3183

3.5345

7.2684

13.5920

26.3oO6

Nomura

Cooke

1.5802

2.3183

3.5312

7.2683

i3. 591$

26.2771

capacitance obtained by (30) and (31) and by rll shows

that the numerical integration used” in [1] led-t; ~ capac-

itance error somewhat less than 1 percent.

VI. EXAMPLES

The simplest problem is the isolated disk, obtained by

putting h + m in Fig. 1, for which the exact solution is

known. Here, ,kI(r,s) -0 and (14) shows that

~jo an j’ ko*(x,y)P~(y)(l - y2)-’/2y dy = g(x),
o

O<x<l (32)

which in view of (23) with C~M- 0 gives a. = 20-1 =

(2/7r) and an’s O for n > 1. The charge distribution in this

case is from (13) and (11) given by

{

2n - 1V080(1 + e,)(az – r2)-1/2, forrsa
a(r) = o

9

whereas the capacitance is simply

c = 4.%J1 +

forr>a

(33)

8p)a. (34)

The present analysis therefore gives the exact solution to

the isolated disk problem.

Another simple problem is the microstrip disk in vacuo,

obtained by putting e, = 1 in Fig. 1, for which no exact

solution is known to the authors. Numura [8] obtained

an approximate solution to Love’s integral equation and

gave a table of values proportional to the capacitance of

the disk for A/a > 0.2; some of these were later corrected

by Cooke [9]. In this case the only nonzero term in kl(r,s)
is, from (10), given by

(}2&
kl(r,s) = – ~J1-lK — .

n fl ‘
(35)

Table I shows values of the normalized capacitance

C* = hC/rra2c0 obtained from the present analysis, with

Icl(r,s) as given by (35); N denotes the order of the modified

Legendre polynomials used in the expansion (13) for the

unknown charge distribution. It will be noted that results

converge rapidly and that Numura–Cooke values are in

agreement with those obtained from the present analysis.

Table I also verifies the stationary properties of the capacit-

CI-Cz
ERROR = —

% ERROR
c1

h

C, - CAPACITANCE FROM PRESENT ANALYSIS

C2 - CAPACITANCE FROM FORMULAE

6.0

II

50 GATE /

Y

FUNCTION / 11 MAXWELL’S
/ FUNCTION

40 //’

/1 ///

30

/ ,/,/

p’

2.0 Gr. l

L ●r = 265

I 0 6. =9.6 N

I I I I I
005 02 04 10 hla

Fig, 2. The percentage error in the capacitance obtained from the
formulas [e.g., (30) and (31)].

ante derived in Section V. These have been two test cases

to show the accuracy and convergence of the capacitances

obtained from the present analysis.

VII. THE ACCURACY OF FORMULAS AND RESULTS FOR

THE CAPACITANCE AND RESONANT FREQUENCY

In order to verify the accuracy of the formulas associated

with the Maxwell function approximation (30) or the gate

function approximation (31), a comparison is made with

the more accurate results of the present analysis. The

percentage error in the capacitance obtained from the

formulas is plotted in Fig. 2 for three different dielectric

constants and for h/a > 0.05. Note that the maximum

error occurs in the neighborhood of hla = 0.2 where

neither the gate nor the Maxwell function may adequately

approximate the actual charge distribution; both lead to

- 5.8 percent in capacitance error. Fig. 3 shows three

dimensionless charge distributions; for h/a = 0.5, which

is large enough for the Maxwell function to be accurate;

for h/a = 0.22, for which neither function is accurate;

and for h/a = 0.1 for which the gate function is adequate.

The results for capacitance given by Borkar and Yang

[2] are always lower than those obtained by [1], and for

some h/a the disparity exceeds 10 percent. The results

obtained by [1] are lower than those obtained by the

present analysis, and for h/a in the neighborhood of 0.2
they are lower by - 5.8 percent. The more accurate

capacitances obtained from the present analysis are there-

fore shown in Fig. 4, together with the resonant frequency

of the dominant TM I ~~ mode, based on a circular disk

resonator with magnetic side walls. This resonant frequency

jllo is linked to the normalized capacitance C* = hC/

zazeoer via the relation [10].

f~~o = ‘k— (36)
27taJcVC*

where k = 1.841 and v is the speed of light in vacw. The

experimental results for the resonant frequency ~1 lo
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1
ha(r)
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I
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~
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Fig. 3. The Maxwell and gate function approximation versus the
actual charge distribution.
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c*= Ch

q <, ,,2.65, J I00

J

in [10], their capacitances are not accurate as they stated

and as verified by comparing with the results from the

present analysis.

VIII. CONCLUSION

A rigorous and yet simple, fast, and accurate solution of

the electrostatic problem of the circular microstrip disk

has been presented. Closed form expressions have been

derived for the capacitance of the disk based on two simple

charge distributions.

The capacitance may be computed in three different ways:

either by using the present analysis, or by using the formulas

derived in the Appendix together with the correction curves

presented in Fig. 2, or, alternatively, by using the Galerkin’s

procedure suggested by Itoh and Mittra ancl then the
correction curves of Fig. 2.

In either case, the results may be used to obtain ap-

proximately the resonant frequency of the dominant

TM ~10 mode of the circular disk resonator. When a full

wave analysis is available, the results for resonant frequency

should be compared with those obtained from the present

analysis, in order to verify whether the quasi-static model of

the disk resonator may adequately approximate tlhe dynamic

model.

APPENDIX

In [1] Itoh and Mittra consider two possible one-term

charge distributions for the disk of radius a:

a) Maxwell function

o = 15875 mm <~ . 9.(5 b) Gate function

RESONANT
FREQUENCY

+!l /

a(r) = g .

rca

/ 20

Afq
EXPERIMENTAL /

RESULTS

P

,ds~~’~’
0.05 01 05 50 10

Ma

Fig. 4. The normalized capacitance and the resonant frequency of
the dominant TM I 10 of the disk resonator. The results have been
computed with N < 5 in the expansion (13) for the charge distribu-
tion.

reported in [10] for e, = 2.65 are also included. in Fig. 4

for comparison. We note, however, that these experimental
results are in the range of h/a from 0.14 to 0.22, and Fig. 2

shows that this is the worst range for Itoh and Mittra’s

trial functions, although they obtained almost better

results with respect to the experimental data. It will also

be noted that although Borkar and Yang [2] have obtained

verv good ameement with the ex~erimental results re~orted

(Al)

(A2)

Their results for the capacitance may be obtained by

inserting either expression a) or b) for a(s) in (4), putting

~(r) = 1, multiplying both sides of the equation by rrr(r),

and integrating over (O,a). Their result for the Maxwell’s

function is the same as that obtained in this pajper for one

term in the Legendre expansion (13) when the integrations

are carried out exactly; it is

J J

Q a~(az _ ,2)-I/z ~r a,y(a’ - S2)-1/2G(~,S) ds.~a.—

27ca ~ o
(A3)

The expansion for G(r,s) is

(A4)

Thus (A3) may be rewritten

(A5)
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Integrating the Laplace transform 29.3.110 of [7], we find

‘n=r(52’-2”’’”
1=.

[
n – 2 tan–l (ny)

2

so that with y = h/a we find

+ ny in
n’yz

1 + n’y’ )
(A6)

IL n=l J

This expression exhibits the correct limiting behavior

of the capacitance for large h/a, but not for small h/a.

Thus as h/a ~ m, C ~ 4aw

The corresponding result for the gate function is

(A8)

Now Z“ is replaced by Jn, where

‘n‘r’ (-%92’-2”’’”

(A9)

and Watson [3] gives

J“ = ~ ~~ {~n’y’ + sin’ (d/2) - ny](l + cos ~) d~.

(A1O)

This may be evaluated by using the transformation given

by Byrd and Friedman [11, $282]; the result is

J. = [4/(3nk3)]{(2k2 – l)E(k) + (1 – k2)K(k)} – ny

kz = 1/(1 + n’y’), JO = 4/3z, and E(. ) is the complete

elliptic integral of the second kind. Thus

This expression exhibits the correct limiting behavior of

the capacitance for small h/a, but not for large h/a. Thus

when it/a is small,

J“ = 4/(37r) – ny + ()(y’)

so that, for small h/a,

In view of u(1 – ~) = 26.8,, C has

parallel plate condenser, namely,

(A12)

ma(l – /3)

2y “
(A13)

the known value of the

C = rra2cOe,/h. (A14)
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