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A Legendre Approximation Method for the
Circular Microstrip Disk Problem

SHIMON COEN, STUDENT MEMBER, IEEE, AND GRAHAM M. L. GLADWELL

Abstract—The quasi-static solution for the circular microstrip disk is
studied using a Galerkin solution to the Fredholm integral equation of
the first kind derived by using the Green’s function approach. The basis
functions are modified Legendre polynomials combined with a reciprocal
square root to provide the correct singularity in charge density at the
edge of the disk, The integrals involving the singular part of the Green’s
function are evaluated exactly, the remainder by using Gaussian quadra-
ture. The method is compared in computational efficiency with recent
methods based either on a Galerkin approach in the spectral domain, or
the use of dual integral equations. Numerical results are given for charge
distribution and capacitance; they are compared to exact results and
those obtained by others, and the limitations of those methods are dis-
cussed. Closed form expressions are given for the capacitance of a disk
based on two simple charge distributions.

1. INTRODUCTION

ECENTLY, three methods have been proposed for
R the determination of the capacitance of the circular
microstrip disk for applications in microwave integrated
circuits. Itoh and Mittra [1] propose a Galerkin technique
in the spectral domain. They present a general theory but
give numerical results only with first-order approximation
in their technique. The coefficients of the Galerkin matrix
in [1] involve infinite integrals of Bessel functions, and
these require considerable computer time. To avoid this
deficiency, they present numerical results only for two
very simple one-term approximations to the charge density,
but have not shown what the contribution is of additional
basis functions to capacitance results. We suggest that
although working in the spectral domain makes the for-
mulation of electrostatic problems easy, it has no advantage
over the space formulation, used here in the mumerical
solution. The more accurate calculations of the present
analysis confirm, however, that the one-term results for
capacitance given in [ 1] are sometimes remarkably accurate.
In addition, it is shown in the Appendix that the capacitances
corresponding to these one-term approximations may be
expressed in closed forms which exhibit the limiting prop-
erties observed numerically in [1] and take considerably
less computation time.

Borkar and Yang [2] present a method based on dual
integral equations. Although they claim that their numerical
results are “slightly lower™ than those of [1], the disparity
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Fig. 1. The geometry of the circular microstrip disk.

is more than 10 percent in some cases. Numerically, their
method is less efficient than that of [1] since it involves
the calculation of numerous infinite integrals of products of
Bessel functions. Their claim that the solution is obtained
from a “quickly convergent series” is not substantiated;
on the basis of our experience with series of the kind they
use in other, but similar applications, we doubt the validity
of this claim. ‘

Although the nature of the charge distribution is in-
corporated in [1] or [2], the calculation of charge dis-
tribution would require a number of basis functions,
much computational effort, and time. From a practical
point of view, this is not a deficiency since in practice the
exact charge distribution is rarely required but solutions
to electrostatic problems are incomplete without it.

The capacitance of the circular microstrip disk in vacuo
for large a/h may be obtained approximately by a formula
due to Kirchhoff [12]. Wolff and Knoppik [13] assume
that for large a/h the edge field of the circular microstrip
disk is similar to that of the rectangular microstrip disk.
They use Kirchhoff’s [12] formulas, and further assume
that the edge effect may be computed from the guasi-TEM
solution of a microstrip line of width w = 24. In this way
they obtain a first-order modification of Kirchhoff’s
formula valid for a certain range of a/A.

In this paper the electrostatics of the circular microstrip
disk is formulated as a Fredholm integral equation of the
first kind with a singular kernel. The charge density is
expanded in terms of modified Legendre polynomials,
together with a reciprocal square root to provide the correct
singularity at the edge of the disk. The integrals arising
from the singular part of the kernel are evaluated exactly,
the remainder by using Gaussian quadrature. The total
charge and capacitance are obtained with no extra numerical
integrations.

II. FORMULATION OF THE BASIC INTEGRAL EQUATION

The axially symmetric electrostatic potential y» due to a
charged circular disk shown in Fig. 1 satisfies Laplace’s
equation and certain boundary conditions. The Green’s



function solution for Y(r) in terms of charge distribution
a(s) is most easily obtained by transforming to the spectral
domain. The Hankel transform of the potential J/(£) may
be expressed in terms of the transform &(¢) in the form
given by Itoh and Mittra [1], namely,

¥(&) = ()8 M

where, in the particular problem shown in Fig. 1,

9E) = (1 — e[l — =21 @
a=¢fl +¢g)and f = (1 — ¢g)/(1 + ¢,). Now write
5() = f " So(s)To(s) ds ®
0

and apply the inverse Hankel transform to both sides of
(1); the result is the following Fredholm equation of the
first kind:
oaf(r) = f sG(r,5)o(s) ds, r<a 4)
]
Here (r) is the potential on the disk, o(s) is the unknown
charge distribution, and G{(r,s) is the axisymmetric Green’s

function linking the potential at radius r to an annual
distribution o(s) at radius s. G(r,s) may be written

G(I’,S) = ko(",s) + kl(rss) (5)

where ko(r,s) is the axisymmetric free-space Green’s
function

kolr,s) = f " To(rETo(sE) de
0

r<s
r>s

_ {(Z/ES)K (r/s),
—@/ar)K(s/r),

—(1—ﬂ)f

in which K(-) is the complete elliptic integral of the first
kind. If y(r) = 1 for r < a, then the capacitance is the
total charge given by

©

ky(r,s) = 55 Jo(rJo(s8) d&  (7)

C = an ro(r) dr.
0

The equation governing the charge distribution on the
disk in any other axisymmetrical configuration, e.g., when
there is a cover over the disk, will have the same form (4)
where ky(r,s) will be the same but the multiplier of J,(#¢) -
Jo(s&) in the integral for k,(r,s) will be changed. The
analysis given as follows may be modified to apply to such
problems.

The term (1 — Be”?*)~1 in (7) may be expanded into
a uniformly convergent series, and then (7) may be ex-
pressed as

by =~ =p L p [

0

e” M o(rO)Jo(s8) dC (9)

which in turn may be written in terms of elementary
functions using the result given by Watson [3]; the final

®
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result is
k) = 2@ = p) 3 PR {N”} (10)

where f, = [(r + s)2 + (2nh)*]Y2. The elliptic integrals
are computed using the Chebyshev expansion given by
Luke [4], and the infinite series is summed by applying
the nonlinear transformations developed by Levin [5].
These were found to be fast and accurate.

III. APPROXIMATION SOLUTION OF THE INTEGRAL
EqQuATION USING PROPERTIES OF
LEGENDRE POLYNOMIALS

Introduce dimensionless variables and functions by taking
s=ay a(s) = Vooa~'n(y)
Y(r) = Vog(x)  ko(rs) = a”ko*(x,y)

ki(r,s) = a” Yk, *(x,) (11)

where V, is some standard potential. Then (4) and (5) give

r = ax

o(x) = f [ko*(6,y) + k) ln() dy, 0 <x<1.
0

(12)
Now assume that #(y) may be approximated by
. N
) =1 = y)"" 3 al () (13)

where P,*(y) = Pz,,(\/ 1 — y%, and P,,(*) is the Legendre
polynomial of degree 2n, and a, are coefficients to be
determined. Substitute (13) into (12): the equation becomes

N 1
o) = Y a, f [ko*(x, )
n=0 0

+ kG, 0]y P (A = yH TV dy.

The first integral, involving the singular part of the kernel,
may be evaluated in closed form by using the result due
to Popov [6], namely,

(14)

1
f (L = )" Pyke*(x,)P*(0) dy = WPAx) (15)
4] .

where

= (7/2)[n) /(2> (n )} ] 16)
The second integral in (14) ma& be transformed by the
substitution = v/1 — »? into

f k) yPAOXL = )12 dy

0

- f ey )Pa(t) dt = byx) (17)
0

where k,(x,t) = k,*(x,y). This integral may be approx-
imated using ordinary Gaussian quadrature of suitable
order 2M > 2N. If w;t; are the weights and positive
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abscissa of this quadrature given, for example, in Abram-
owitz and Stegun [7], then
M

by(x) ~ Z Wik (x,8)P,(1)).

Jj=1

(18)
Now (15) and (17) reduce (14) to a set of linear equations

N N
9x) = Y alPx) + ¥ abflx), 0=<x<L
n=0 n=0
(19)
These equations may be solved by multiplying throughout

by x(1 — x%)~Y2p, *(x) and using the orthogonality
conditions

1 1 .
[ = xR, R @) dx = [ PasPants) du
0 0
= (4m + 1)715,,,
(20)
and another Gaussian quadrature

f UM — )PP X (0)by(x) dx = f " Ponu)dy) du = oy
0 0 an
where d,(u) = b,(~'1 — u?) and

M
Com = k;1 WP () d (1) (22)

Thus (19) yields

N

(@m + D8, + Y Comn = Opos m=0,1,---,N.
n=0

(23)

The right-hand side corresponds to a dimensionless
potential g(x) = 1. If the same order of Gaussian quad-
rature is used in (18) and (22), then ¢,,, will be symmetric.

Equation (23) provides N + 1 equations for the deter-
mination of the N + 1 unknown a,. The capacitance is
given by

C = 2naoa,. 24)

Note that no extra numerical integration is required to
compute this quantity.

IV. VARIATIONAL PROPERTIES OF THE CAPACITANCE

In this section it will be shown that the capacitance given
by (24), where a, is obtained from the solution of (23), is
stationary for arbitrary variations in n(y) as given by (13),
that is, in a,.

First in (12) put g(x) = 1, 0 < x < 1, and multiply
both sides of this equation by [§ xn(x) dx; this gives

1 1 1
f xp(x) dx = f f K*(x, y)n(m(y) yx dy dx  (25)
0 0

0

where K* = ky* + k,*. Here the potential on the disk
is 1 and the total charge Q is from (8) and (11) given by

Q= 2man‘

0

1

yn(y) dy. (26)

If we write Q = C, then (25) shows that

2raa _ fofo K*(x,yInGon(y)xy dy dx.
c [fo xn(x) dx]?

Since K*(x,y) is symmetric, then the right-hand side of
(27) is always positive. To make the left-hand side of (27)
stationary with respect to arbitrary variations in the
functional form of 5, substitute the expansion (13) for 5
and set 0C/da, = 0; the result is

27

2noa

N
aoan,o = (4}1 + 1)_1)\,"(1” + .20 Cj"aj,
i=

n=012-N (28)

where use was made of (15) and (21). But, in view of (24),
the capacitance is given by

C = 2noaa, 29

from which the left-hand side of (28) becomes §,,,. Now
comparing (28) and (23), we see that they are identical.
So the capacitance as given by (24) is stationary with
respect to arbitrary variations in the functional form of #,
i.e., 0C/0a, = 0 forn = 0,1,2,---,N.

Further, since the right-hand side of (27) is always
positive and the left-hand side is stationary, then the exact
solution for capacitance, say C,, will be always greater
than or equal to Cy; that is, C, > Cy and thus the ap-
proximate capacitance from the present analysis Cy,
where N denotes the number of terms in the expansion (13),
is a lower bound.

V. FORMULAS FOR CAPACITANCE

For the circular microstrip disk problem, Itoh and
Mittra [17] obtained results with first-order approximation
in their technique, based on two very simple one-term
approximations to the charge distribution. In the Appendix,
these are expressed in closed form. The result, for the
capacitance associated with the Maxwell function approx-
imation to the charge density, is from (A7) given by

Cy = 2naoc/[n/2 -1 -p ni ﬁ”'ll',,] (30)
where

1 _ nzv::
I =-|n—2tan" ! (n +nln{————}]
2 [ ) + my 1 + n?y?
and y = h/a. The corresponding result for the gate function

approximation to the charge density is from (A1) given by

Toa

ce= - -m § s oo
where
J, = [4/3rk>){(2k* — DE(k) + (1 — K*)K(k)} — ny
k2 = 1/(1 + n*p?).

The computation of capacitance via the formulas (30)
and (31) takes considerably less computation time than the
infinite integrals in [1]; a comparison of the results for
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TABLE 1
NORMALIZED CAPACITANCE FOR THE CIRCULAR MICROSTRIP
in Vacuo
Nomura
h/a N=0 N=1 N =2 -
Cooke
0.2 1.5290 1.5800 1.5800 1.5802
0.5 2.3094 2.3183 2.3183 2.3183
1.0 3.5336 3.5345 3.5345 ©3.5312
2.50 - 7.2684 7.2684 7.2684 7.2683
5.00 13.5920 13.5920 13,5920 13.5918
10.00 26.3006 26.3006 26.3006 26.2771

capacitance obtained by (30) and (31) and by [1] shows
that the numerical integration used in [1] led to a capac-
itance error somewhat less than 1 percent.

VI. EXAMPLES

The simplest problem is the isolated disk, obtained by
putting 2 — oo in Fig. 1, for which the exact solution is
known. Here, k,(r,s) = 0 and (14) shows that

a, f ko* (e, PEONL — Y22y dy = g(x),
0
O<x<1 (32)

which in view of (23) with ¢,, = 0 gives ay = A,"! =
(2/m) and a, = 0 for n > 1. The charge distribution in this
case is from (13) and (11) given by

2n Woeo(l + e)@® — r»)~ Y2,  forr<a
o(r) =
forr > a
(33)
whereas the capacitance is simply
C = deo(1 + g)a. (34)

The present analysis therefore gives the exact solution to
the isolated disk problem.

Another simple problem is the microstrip disk in vacuo,
obtained by putting ¢, = I in Fig. 1, for which no exact
solution is known to the authors. Numura [8] obtained

an approximate solution to Love’s integral equation and-

gave a table of values proportional to the capacitance of
the disk for A/a > 0.2; some of these were later corrected
by Cooke [9]. In this case the only nonzero term in &, (r,s)
is, from (10), given by

k(r,s) = "—f1-1K (35

{2\/ rs;

Table I shows values of the normalized capacitance
C* = hC/[na’e, obtained from the present analysis, with
k(r,s) as given by (35); N denotes the order of the modified
Legendre polynomials used in the expansion (13) for the
unknown charge distribution. It will be noted that results
converge rapidly and that Numura-Cooke values are in
agreement with those obtained from the present analysis.
Table I also verifies the stationary properties of the capacit-

¢,-¢
ERROR = —+—2
¢
0,
4 % ERROR Cy - CAPACITANCE FROM PRESENT ANALYSIS
C, ~ CAPACITANCE FROM FORMULAE
6-0—
/
50} eaATE /
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FUNCT ION
O /
4.0 Y,
/77
/ ///
301
Vo
~
20k s
-0 €r=96
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Fig. 2. The percentage error in the capacitance obtained from the
formulas [e.g., (30) and (31)].

ance derived in Section V. These have been two test cases
to show the accuracy and convergence of the capacitances
obtained from the present analysis.

VII. THE ACCURACY OF FORMULAS AND RESULTS FOR
THE CAPACITANCE AND RESONANT FREQUENCY

In order to verify the accuracy of the formulas associated
with the Maxwell function approximation (30) or the gate
function approximation (31), a comparison is made with
the more accurate results of the present analysis. The
percentage error in the capacitance obtained from the
formulas is plotted in Fig. 2 for three different dielectric
constants and for #f/a > 0.05. Note that the maximum
error occurs in the neighborhood of Aja = 0.2 where
neither the gate nor the Maxwell function may adequately
approximate the actual charge distribution; both lead to
~ 5.8 percent in capacitance error. Fig. 3 shows three
dimensionless charge distributions; for 4#/a = 0.5, which
is large enough for the Maxwell function to be accurate;
for h/a = 0.22, for which neither function is accurate;
and for h/a = 0.1 for which the gate function is adequate.

The results for capacitance given by Borkar and Yang
[2] are always lower than those obtained by [1], and for
some kja the disparity exceeds 10 percent. The results
obtained by [1] are lower than those obtained by the
present analysis, and for #/a in the neighborhood of 0.2
they are lower by ~ 5.8 percent. The more accurate
capacitances obtained from the present analysis are there-
fore shown in Fig. 4, together with the resonant frequency
of the dominant TM,,, mode, based on a circular disk
resonator with magnetic side walls. This resonant frequency
Si10 is linked to the normalized capacitance C* = AC/
na’eqe, via the relation [10].

vk
f110 =

2na/ e, C*

where k = 1.841 and v is the speed of light in vacuo. The
experimental results for the resonant frequency fi;,

(36)
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Fig. 4. The normalized capacitance and the resonant frequency of
the dominant TM,,, of the disk resonator. The results have been
computed with N < 5 in the expansion (13) for the charge distribu-~
tion. '

reported in [10] for ¢, = 2.65 are also included in Fig. 4
for comparison. We note, however, that these experimental
results are in the range of 4/q from 0.14 to 0.22, and Fig. 2
shows that this is the worst range for Itoh and Mittra’s
trial functions, although they obtained almost better
results with respect to the experimental data. It will also
be noted that although Borkar and Yang [2] have obtained
very good agreement with the experimental results reported

in [10], their capacitances are not accurate as they stated
and as verified by comparing with the results from the
present analysis.

VIII. CONCLUSION

A rigorous and yet simple, fast, and accurate solution of
the electrostatic problem of the circular microstrip disk
has been presented. Closed form expressions have been
derived for the capacitance of the disk based on two simple
charge distributions.

The capacitance may be computed in three different ways:
either by using the present analysis, or by using the formulas
derived in the Appendix together with the correction curves
presented in Fig. 2, or, alternatively, by using the Galerkin’s
procedure suggested by Itoh and Mittra and then the
correction curves of Fig. 2.

In either case, the results may be used to obtain ap-
proximately the resonant frequency of the dominant
TM,,;, mode of the circular disk resonator. When a full
wave analysis is available, the results for resonant frequency
should be compared with those obtained from the present
analysis, in order to verify whether the quasi-static model of
the disk resonator may adequately approximate the dynamic
model.

APPENDIX

In [1] Itoh and Mittra consider two possible one-term
charge distributions for the disk of radius a:
a) Maxwell function

o(r) = 2 (@ = ry)~i2

2na D
b) Gate function
a(r) = —% | (A2)

na

Their results for the capacitance may be obtained by
inserting either expression a) or b) for o(s) in (4), putting
Y(r) = 1, multiplying both sides of the equation by ra(r),
and integrating over (0,a). Their result for the Maxwell’s
function is the same as that obtained in this paper for one
term in the Legendre expansion (13) when the integrations
are carried out exactly; it is

wa = QJ'“ r(@® — r2)~ Y2 dr J"' s(a® — s)"12G(r,s) ds.
0

2na 0
(A3)
The expansion for G(r,s) is

G(r,s) = f‘” Jo(ré)J o(s8) {1 ) ,,:21 ﬁn—ie-zgnh} de.

0
(A9

Thus (A3) may be rewritten

e _Q_ © [sin (aé):lz {1 (=B i ﬁn—1e—2§nh} de.

" 2na 0 14

(A5)
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Integrating the Laplace transform 29.3.110 of [7], we find

© : -2
In — f (E’_f) e—2nvx dx
0 X
1 N n2v2
=-|n—2tan ' (ny) + n ln{—}] A6
| )+ min [ 2T1] a0
so that with y
= Znaa/[n/Z -1-pY B"_II,,].
n=1
This expression exhibits the correct limiting behavior
of the capacitance for large k/a, but not for small A/a.

Thus as #/a — o, C — 4ao.
The corresponding result for the gate function is

?_ _Qf“’ (11(661))2 {1
T Jo ¢
Now I, is replaced by J,, where

© 2
Jn — J (Jl(x)) e—2nyx dx
0 x

and Watson [3] gives

= h/a we find

(AT)

1 — ﬁ) ;i ﬁn—le—Zénh} df
(A8)

(A9)

- lf” {Vn'y? + sin® (¢/2) = m}(1 + cos ¢) d¢.
TTJo
(A10)

This may be evaluated by using the transformation given
by Byrd and Friedman [11, §282]; the result is

= [4/Grk>){2k* — DEK) + (1 — KHK(E)} — ny

2 = 1)1 + n*?), J, = 4/3n, and E(:) is the complete
elliptic integral of the second kind. Thus

Toa

c= s - a-p F pia). @

This expression exhibits the correct limiting behavior of
the capacitance for small 4/a, but not for large A/a. Thus

when A/a is small,

= 4)(37) — ny + 0(y*) (A12)
so that, for small /a,
nua [((1 = By) _ moa(l = B)
€= /{(1 — /3)2} 5 A

In view of a(l1 — B) = 2¢4¢,, C has the known value of the
parallel plate condenser, namely,

C = na’eye,/h. (A14)
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